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(Excerpted from Linear Programming in Plain English, version 1.1, 

by Scott Stevens, CIS/OM Program, James Madison University)

tc \l1 “PROBABILITY AND EXPECTED VALUES
Introduction and Terminologytc \l2 “Introduction and Terminology
In the chapters to come, we’ll deal with stochastic processes; that is, with processes which involve randomness.  Analysis of such processes calls for a different set of tools than those we have used so far, and takes us into the realm of probability theory.  While probability theory is incredibly vast and, in places, quite complex, we will need only the basics in order to handle the problems that we’ll see in 291.  Still, these basics will merit our careful thought and attention, for probability theory is notorious in one respect: it often documents for us how thoroughly unreliable our intuition can be when dealing with matters of chance.

The definitions that I give here will be less general and less formal than one would find in an advanced statistics textbook.  For our purposes, though, they are equivalent to the more rigorous definitions, and have the advantage of being comprehensible.  If you would like to see a more formal treatment of the topics involved, please let me know.  And with that said, let’s get going!

Definitions
An experiment XE "experiment"  is any well-defined, repeatable procedure, usually involving one or more chance events.  One repetition of the procedure is called a trial XE "trial" .  When a trial is conducted, it results in some outcome.  (Note that, in the usual case where the experiment involves randomness, different trials can result in different outcomes.)  A random variable XE "random variable"  is a measurable (numeric) quantity associated with the outcome of an experiment.  An event XE "event"  is a statement about the outcome of the experiment that is either true or false.

Example:  We can discuss the experiment of drawing 5 cards at random from a deck of 52 playing cards.  On a given trial, let’s say the selected cards may be the four aces (spades, clubs, diamonds, and hearts) and the king of spades.  This is the outcome of the trial
.  A different trial would probably result in different cards being selected, and hence a different outcome.  Let’s let A = the number of aces drawn.  Then A is a random variable.  For this particular trial, the value of A is 4.  If the cards selected in the trial had been the 2, 3, 4, 5 and 6 of clubs, the value of A would have been 0.

As an example of an event, let E be the statement “the five cards drawn are all the same color”.  In our “4-aces” trial this event is false, while in our “all clubs” trial the event is true.

As you can see, a statement like E is sometimes true and sometimes false.  We’d like to say more than that, however.  If we conducted this experiment a very large number of times, how often would E be true?  More than half?  Less than half?  Less than one time in a hundred?  

Before we answer this question, let’s deal with a simpler experiment, and a simpler event.  We flip a (fair) penny.  Let H be the event that the penny comes up “heads”.  If the penny is truly fair, it should be just as likely to come up heads as it is to come up tails and so we would expect the statement H to be true half of the time.  If we use the symbol P(H) (the probability XE "probability:classical definition"  of  H) to represent the fraction of the time that H is true, then we would say P(H) = .5

We have to be a bit careful in exactly how we interpret this.  If, for example, I flip a coin twice, I am not assured that I will get one head and one tail.  Indeed, if I flip a coin 10,000 times, it is quite unlikely that I will get exactly 5,000 heads and 5,000 tails.  The actual number of heads will probably be close to 5,000, but not dead on.  What we are really saying is this: If we conduct the coin flipping experiment a bunch of times (say, N times) and we count the number of times that H is true (say, H times), then H/N is about .5, and the bigger N gets, the closer H/N gets to .5.  (If, for example, we get 5,053 heads in 10,000 flips, then H/N = 5053/10000 = .5053.  In general, increasing the number of trials would gradually bring this ratio closer and closer to .5.)  This is the classical or relative frequency definition of probability, and it will suffice for our purposes.

Several obvious (but important) results follow from what we just said.  If an event is always true (always occurs), then its probability is 1, and no event can have a probability greater then 1.  If an event is always false (never occurs), then its probability is 0, and no event can have a probability less than 0.  If the probability of an event X occurring is .1, then the probability of it not occurring is .9.  [If, for example, I make a mistake 10% of the time, I do not make a mistake 90% of the time.]  Such “opposite” events XE "event:complementary"  are called complements or complementary events, and the probabilities of complementary events always add to 1.

Over the years, people have worked out a lot of rules that describe the way that probabilities interact, and we can use them to compute the probabilities of some pretty complex events.  For example, let’s return to our original experiment of drawing five cards from the deck of 52 cards.  The probability that all five are the same color is given by 

P(E) =  (25/51)(24/50)(23/49)(22/48) = .05062

So there is only about a 5% chance of being dealt a “one color hand” in a game of poker
.  The laws of probability are studied extensively in COB 191, and in 291 we’ll only introduce those laws we need for our current topics.

Probability Basicstc \l2 “Probability Basics
We’ve defined an event to be a true-false statement about the outcome of an experiment.  Thus, depending on the outcome of our particular trial of the experiment, the statement may be true or false.  The probability of the event is a measure of how likely that the statement will be true in a randomly selected trial; the more likely the event, the higher the probability.  In 291, we’ll need three computational formulas for evaluating probability.  Before we develop them, though, we need some notation.

Notation

To talk about specifics, let’s imagine the experiment of randomly selecting a person from among those currently residing in Harrisonburg.  Here are a few events we could discuss XE "sample problems:Harrisonburg residents" .

D = the selected person lives in the JMU dorms

S = the selected person is a JMU student

B = the selected person has blue eyes

From these “atomic” events, we could create compound events, like

S and B           = the selected person is a blue-eyed JMU student

S or B             = the selected person is either a JMU student, or has blue eyes, or both

(not D) and S = the selected person does not live in the dorms, but is a JMU student

 XE "event:atomic" 

 XE "event:compound" Since expressions like those written above are very common, we have shorthand ways of writing them.  

S and B = S ( B = S & B = S ( B = SB 
(All mean “both S and B are true”.)

S or B  = S ( B = S ( B         _


(All mean “S or B, or both, are true”.)

not S   = ~S    = -S    = (S = S   


(All mean “S is not true”.)

Note that (S and D) is the same as (D and S).  Note, too, that (S or D) is the same as (D or S).

In these notes, I’ll tend to use notation SB for S and B and ~S for not S.   XE "event:joint (A AND B)" 

 XE "event:complementary (NOT A)" 
Notice that knowing the truth or falsity of one event can give you some information about the likelihood of another event.  For example, if I know that D is true (the person selected lives in the JMU dorms), then it is almost certain that S is true, and the person is a JMU student.  This kind of relation between events turns out to be so important that we define a symbol for it, as well: XE "event:conditional (A GIVEN B)" 
P(S given D) = P(S | D) = the probability that the selected person is a JMU student, given 

that the person does live in a JMU dorm.

P(S |D) says:  “Suppose you are told that D is true.  Knowing this, how likely is it that S is true?”  Note that P(S|D) is not the same as P(D|S)!  For example, P(dead | born in 1600) = 1, but P(born in 1600 | dead) is quite small, since most dead people were not born in 1600. 
An Instructive Example: HARRISONBURG Demographics

 XE "sample problems:Harrisonburg residents" We’ll continue by making the last example a bit more specific.  For the moment, let’s pretend that there are only 200 people residing in Harrisonburg, and that they break down in the way recorded in the table below:

	
	Live in JMU Dorms
	Don’t live in JMU dorms

	JMU Students
	24
	36 

	Not JMU Students
	1
	139


Table 1.  A hypothetical distribution of Harrisonburg inhabitants

So, for example, there are 24 people (out of the 200) who are JMU students living in the dorms, and 1 person who lives in the dorms but is not a JMU student.  It follows from this that 25 people live in the dorms.  We can similarly conclude that there are 175 people who do not live in the JMU dorms, that there are 24 + 36 = 60 people who are JMU students, and that there are 1 + 139 = 140 people who are not JMU students.  Make sure all of this is crystal clear.

Can we change these statements into statements about probability?  Sure.  If I select a person from our population of 200 at random, my chances are 24 out of 200 of picking someone that is a JMU student and lives in the JMU dorms.  This means that P(S and D) = P(SD) = 24/200 = .12; that is, there is a 12% chance that the person chosen will be a dorm-dwelling JMU student.  By dividing all of our figures by the total population, we can recast the table above in terms of probability. XE "contingency tables" 
	
	Live in JMU Dorms
	Don’t live in JMU dorms

	JMU Students
	24/200 = .12
	36/200 = .18 

	Not JMU Students
	1/200 = .005
	139/200 = .695


Table 2:  We recast Table 1 in terms of probability

Adding up the first column tells you the probability P(D) that the selected person lives in the dorms:  24/200 + 1/200 = 25/200 = .125.  In parallel fashion, the probability of not living in the dorms is .18 + .695 = .875.  The probability of the selected person being a JMU student is .12 + .18 = .3, and the probability of that person not being a JMU student is .005 + .695 = .7.  Again, make sure this is perfectly clear before proceeding.  In particular, note that the probabilities of the complementary events add to one.

Let’s go further.  Suppose I told you that the selected person does live in the JMU dorms.  How likely is it that the person is a JMU student?  Well, out of the 25 people who live in the dorms, 24 are JMU students, so the probability is 24/25 = .96.  (Since we are given that the person does live in the dorm, we restrict our attention only to the dorm-dwellers; the numbers in the second column are completely irrelevant to us.)

Note how we got this answer of .96.  In Table 1, we added the entries in the column of the table corresponding to the given (24 + 1 = 25).  We then divided this sum into the number of cases in which both the given and the “target” event were true (in 24 cases, the person lives in the dorm AND is a JMU student).  

Could we get this same answer from Table 2?  Sure!  Table 2 was obtained simply by dividing everything in Table 1 by 200, and this change won’t affect our calculations in the least.  Take a look:

P(S |D) =    24    =          (24/200)            =        .12       =  .12  = .96

                 24 + 1    (24/200) + (1/200)          .12 + .005      .125

We see, then, that whether we are given a “counting contingency table” (like Table 1) or a “probability contingency table” (like Table 2), the calculations needed to find probabilities are differ very little.  Our work with Table 2 shows us a formula that is true in general:


P(S |D) = P(S and D)             XE "probability formulas" (Formula for conditional probability)

               P(D)

And how did we compute P(D) = .125?  Look again at the work above.

P(D) = .12 + .005 = P(S and D) + P(~S and D)

(Did you get that last line?  READ IT IN ENGLISH!  We want to know how likely it is that a randomly selected person lives in the JMU dorms.  12% of all people are dorm-dwelling students.  0.5% of all people are dorm-dwelling nonstudents.  Therefore, 12.5% of all people (students or nonstudents) live in dorms.  This is a particular example of decomposition into cases, something that we’ll discuss more later.

Okay, let’s see if we can lock all of this down.

Probability Formulas

(Conditional Probability Formula)  For any two events, A and B, P(A | B) represents “the probability of A, given B”.  Saying this another way, P(A | B) says, “Suppose you know that, in fact, B is true.  Then how likely is it that A is true?”  The answer can be found from this formula:

P(A | B) = P(A and B)

               P(B)

In English:  “The probability that one thing occurs, given that another thing occurs is equal to the probability that they both occur, divided by the probability that the given occurs.”  Note that it is the given which appears by itself in this formula (P(B)).

(Joint Probability Formula)  For any two events A and B, P(A and B) = P(A) P(B| A).

In English, “The probability that two things both occur (or ‘are true’) is the same as the probability that one of them occurs times the probability that the other occurs, given that the first did, indeed, occur.”  

For example, the probability that the first two cards you are dealt are both clubs is the probability that the first card is club times the probability that the second card was a club, given that the first card was a club.  The probability of the first card being a club is 13/52 = .25 [There are 13 clubs in a deck of 52 cards], and, given that your first card was a club, the chance of your second card being a club is 12/51.  [In the remaining deck of 51 cards, 12 of them are clubs.]  Therefore

P(first card club and second card club) = 

P(first card club) P(second card club | first card club) =

(.25)(12/51) = 3/51, or a little under 6%.

Recall that, for any two events P(A and B) = P(B and A).  (THINK!  Why is that?)  Therefore, the joint probability formula can be equally well written as

P(A and B) = P(B) P(A | B)

Whichever form we use, note that the event that was GIVEN in the conditional probability is the event which gets its own term in the product.        

P(A and B) = P(B) P(A | B)    ( B is the given, and the formula includes P(B)

P(A and B) = P(A) P(B | A)    ( A is the given, and the formula includes P(A)

Many people have difficulty recognizing a statement of conditional probability, or determining which event in a conditional statement is the given.  Here’s some helpful advice. XE "conditional probability:identifying the given"   

You can always recast a conditional probability statement as an “if-then” statement.  The “if” part of this statement will then be the given.  Other words can substitute for “if” in such statements.  Some common ones are when, in those cases (in which), and of all.  As an example of the last, “32% of all Christmas presents are returned” means 

P(returned | Christmas present) = .32.

If you have trouble with this, you can think of it this way: Suppose I am told P(miss work | have a cold) = .1.  Does this say that 10% of the absentees have colds, or that 10% of the cold sufferers miss work?  To unravel it, remember that the given is what you know for sure in the probability statement.  So what do I know here?  That the person does have a cold.  Okay, now given that, how likely are they to miss work?  10 percent.

Get it?

We have one more probability rule to lock down; the rule that we used to compute P(D) in our dorm example (page 6-4).  Since it is easier to think about counting than to think about probabilities, let’s focus on Table 1.  There, we said

# of people who live in JMU dorms AND are students + # of people who live in JMU dorms AND are not students =

(# of people who live in JMU dorms)

This is obvious.  Why does it work?  Well, every person either is a JMU student or is not a JMU student.  If we count all the student dorm-dwellers, and then all the non-student dorm-dwellers, we’ll have counted each dorm-dweller exactly once.  Note that the categories “Student” and “Not a Student” divide the whole population into two classes, and every member of the population will fit in exactly one of the classes.  Such a partition is called a set of cases.   XE "cases" 
Definition

A set of cases is a collection of events such that, for any particular trial, exactly one of the events is true.

Let’s lock this down with a few examples.  We’ll stick with our experiment of selecting one person at random from the inhabitants of Harrisonburg. XE "mutually exclusive" 
Examples:

V = the selected person is a Virginia resident

M = the selected person is a Maryland resident

D = the selected person is a resident one of the remaining 48 states

These do not form a set of cases.  Why?  (Think before you read on.)  The events are disjoint (“non-overlapping”), as they must be, but they are not “exhaustive” XE "completely exhaustive" —that is, they don’t “catch” the entire population.  How about a Harrisonburg inhabitant who is a citizen of another country? 

S = the selected person is single, widowed, or divorced

H = the selected person is a husband

W = the selected person is a woman
These, again, do not form a set of cases. Why?  (Again, THINK before you read on.)  This time we do “cover” everyone in the population—everyone is either single, widowed, divorced, a husband, or a woman.  Unfortunately, these events are not disjoint (“mutually exclusive” XE "mutually exclusive" ).  They overlap; the selected person might be a single woman, for example, and fall into two categories.

A little thought should convince you that, unless you have a set of nonoverlapping cases which cover every possible outcome of your experiment, the kind of “counting up” procedure we used in Table 1 is going to get screwed up. 

Example (continued):

 XE "sample problems:Harrisonburg residents" Let’s continue with my population of 200 Harrisonburg inhabitants.  Suppose that the dorm-dwellers break down this way: 22 single people, 1 husband, and 13 women.  A mindless calculation then suggests that there are 22 + 1 + 13 = 36 dorm dwellers.  In fact, there were 25: 11 single women, 11 single men, 2 married women and 1 married man.  The eleven single women were each counted twice, leading to the wrong total.  If we had tried to compute the sum using only categories S and H, we would again have gotten the wrong count: 22 + 1 = 23.  In this second calculation, our categories were not comprehensive (“completely exhaustive XE "completely exhaustive" ”), and so we never counted the two married women.

If we had used the categories (events) of “single, divorced, or widowed”, “husband”, and “wife”, our addition would have worked perfectly: 22 + 1 + 2 = 25.  It worked precisely because these three events for a set of nonoverlapping, comprehensive categories—a set of cases.

Since our probability formulas follow from our counting formulas directly (we just divide every term by the total number of possible outcomes—here, 200), we are now in a position to state our third, and last, probability law.

(Cases) XE "cases" 

 XE "probability formulas"   Let A1, A2, ..., An be any completely exhaustive collection of mutually exclusive events.  (That is, in any outcome, exactly one of the statements A1, A2, ... An is true.)  Let E be any event.  Then 

P(E) = P(E and A1) + P(E and A2) + ... + P(E and An)

Basically, this is the probability equivalent of this counting procedure: Count everything in category 1 that has characteristic E.  Count everything in category 2 that has characteristic E.  Do this for each of the categories.  Add the results.  You now have the total number of objects that have trait E.
  

I’ve presented all of this to you because you should understand what you’re doing whenever you do mathematics.  Assuming you do, we’ll now set about developing a shortcut method that can be used to do all of this.

Contingency Tablestc \l2 “Contingency Tables
 XE "contingency table" Let’s return to conditional probabilities.  Reproduced below is Table 1, describing the distribution of Harrisonburg inhabitants.  In this hypothetical example, we imagine that Harrisonburg has only 200 inhabitants.

	
	Live in JMU Dorms
	Don’t live in JMU dorms

	JMU Students
	24
	36 

	Not JMU Students
	1
	139


Table 1.  A hypothetical distribution of Harrisonburg inhabitants

We can see clearly that P(D | S) is quite different that P(S | D).  The first says:  given that the selected person is a student, how likely is it that he lives in the dorms?  The answer is 24/60, since 24 of the 60 JMU students are dorm dwellers.  P(S | D) says: given that the selected person lives in the dorms, how likely is it that he is a student?  Here, the answer is much higher:  24/25, or 96%.  We could, of course, have done both of these calculations with the probabilities in Table 2, rather than the “counts” in Table 1.

A question arises, though:  Suppose you know P(A | B).  Can you then find P(B | A)?  Well, P(A | B) = P(AB)/P(B) and P(B | A)= P(AB)/P(A), by our conditional probability rule.  It follows, then, that if we know P(A | B), P(B), and P(A), we can find P(B | A).  

P(A | B) and P(B) let us find P(AB), and P(AB) and P(A) let us find P(B | A).  As it turns out, many problems require us to do just this kind of calculation.  In the most common kind of this problem, though, we are not given the value of P(A)--we must compute its value, too.  As we’ll see below, we can do this if we have some other information.

Example:  Suppose you are told only this:  

1.
40% of JMU students are dorm dwellers.  

2.
1/140 of non-JMU students are dorm dwellers.  

3.
JMU students make up 30% of the Harrisonburg population.

We wish to determine P(S | D).  That is, how likely is it that a randomly selected dorm dweller is a JMU student?

Answer:  We know P(D | S) = .4 from (1) and P(D | ~S) = 1/140 from (2).  From (3), we know P(S) = .3, so P(~S) = .7.  What can we do with these?

Well, by the formula for cases at the end of the last section, 

P(D) = P(D and S) + P(D and ~S)

From the formula for joint probability in the same section,

P(D and S) = P(S)P(D | S)

and this equals .4(.3) = .12.  Hence, 12% of the Harrisonburg population are dorm-dwelling students (that is, students and dorm-dwellers).  We use the formula for joint probability again to get

P(D and ~S) = P(D | ~S) P(~S)

and this is (1/140)(.7) = .005, or 1/200.  Hence, 0.5% of the Harrisonburg population are dorm dwelling nonstudents (that is, nonstudents AND dorm-dwellers).

Well, if 12% of the population are dorm dwelling students and 0.5% of the population are dorm-dwelling nonstudents, then 12.5% of the population lives in the dorms.  Hence P(D) = .125.  Notice this is just what our formula for cases tells us to do: add up the probabilities from each case.

Now what?  Well, we want P(S | D), which equals P(SD)/P(D) by our formula for conditional probability in the last section.  Since the event SD (student and dorm-dweller) is the same as the event DS (dorm-dweller and student), we know everything we need.  P(SD) = P(DS) = .12, and P(D) = .125.  Therefore,

P(S | D) = .12/.125 = .96

That is, 96% of the dorm-dwellers are students.  We checked this answer by using Table 1 when we started this section, so we know it is right!

“Wait a minute!” you might be thinking.  “It was a heck of a lot easier to get the answer of 96% off of Table 1 than it was by doing all of this equation nonsense!”  True enough.  But the information that I gave you in the last example wasn’t quite the same information that appeared in Table 1.  After all, I didn’t tell you how many dorm-dwelling students there are.  I didn’t even tell you what fraction of the population consists of dorm-dwelling students.  The work we did in the last example appeared longer, partially because we had to compute the proportion of the population that were dorm dwelling students and dorm dwelling non-students from the information given.

Still, I agree with the spirit of this complaint.  If we can fill in a table like Table 1, it makes the computation of the probabilities that we need a piece of cake.  Is there an easy way to fill in a table like Table 1?  The answer is “yes”, but translating the “equation work” above into “table work” will require us to fill in not one but three contingency tables.  We’ll do this in the next section.
Computing Baysian Probabilities Using Contingency Tablestc \l2 “Computing Baysian Probabilities Using Contingency Tables
 XE "probability:Bayesian" So that we can keep things clear, let’s start with another example.

 XE "sample problems:dog example" Example  (The Dog Example):  Suppose that we can categorize dogs as either vicious (V), friendly (F), or neutral (N).  From past experience (or survey), we know that 10% of all dogs are vicious and 30% are friendly.  The rest are neutral.  Only vicious dogs will initiate an unprovoked attack.  There is a (not entirely reliable) indicator of the friendliness of a dog: whether it growls at a stranger (G).  When meeting a stranger, a vicious dog will growl 70% of the time.  A neutral dog will growl at a stranger 40% of the time, and a friendly dog will do so only 10% of the time.

You are about to walk past a strange dog when it begins to growl at you.  How likely is it that the dog is vicious?

Let’s look at what we’re trying to do in a general setting.  We have some events which form a set of cases XE "cases" , and whose probabilities we know.  (For us, these events are V, F, and N.  They form a set of cases since, for any dog, exactly one of the statements must be true.)  We then have another event that we can use as an “indicator”.  (In our example, this event is G, the dog growling.)  We are told the probability of the “indicator” occurring in each of the different cases.  (That is, we are given P(G|V), P(G|F), and P(G|N).)  We are then told that the “indicator” occurred, and asked to revise our probabilities for our cases in light of this information.  (In our example, given that G is true, we are asked the likelihood of V.  That is, we are asked for P(V|G).)  This is the typical structure of a Baysian, or a posteriori probability XE "probability:a posteriori"  problem.  (The term “a posteriori” comes from the fact that we are revising probabilities after learning the results of the indicator.  Bayes was one of the pioneers in working on such problems.)

We’ll solve the dog problem by recreating all the work done using the “equation method” of the last section.  Now, however, we’ll do it in contingency tables.  Check out the setup below.




Figure 1:  The Original Information is Recorded.

Notice I’ve created three tables.  The “corner” table corresponds to Table 2 earlier in this chapter; it is a joint probability table XE "probability:joint" .  The upper-left entry in this table will be the probability that the dog encountered “growls” AND “is friendly”.  The other two tables express conditional probabilities XE "probability:conditional" .  For the table labeled “column given row”, the rows are the givens.  Thus, the upper left corner of the “column given row” table will give the probability that a growling dog is friendly (“is friendly” given “growls”).  On the other hand, the column events are the givens for the lower table, labeled “row given column”.  Thus, the upper left corner of this table reflects that a friendly dog growls (“growls” given “is friendly”) ten percent of the time.  The problem gives us all the numbers we need to fill in the lower table.  The bottom row follows from the top row.  For example, if a friendly dog growls 10% of the time, then it does not growl (~G) 90% of the time.  In general, the columns of the lower table must each add to 1.
Now consider the rows and columns of the corner table.  What do they add to?  Well, the entries in the first column are the probability of a friendly, growling dog and a friendly, non-growling dog, respectively.  Since a friendly dog is either growling or non-growling, adding these together gives you the probability of a friendly dog.  (Confused?  Reread the section on cases, page 6-8.)  Since the probability of a friendly dog is 30%, we’ll write .3 at the bottom of this column.  The numbers in this column must sum to .3.  Similarly, the column sums for the other two columns are .6 and .1, respectively.  This completes the data recorded in Figure 1.

How about the rows of the corner table?  If you add the fraction of all dogs that are friendly growlers and the fraction of all dogs that are neutral growlers and the fraction of all dogs that are vicious growlers, you’ll get the fraction of all dogs that are growlers.  Again, if this isn’t clear, reread the cases section.  It may help you to imagine replacing the word “fraction” with the word “number” in this paragraph.  The relationship between counting and probability is a close one.

So the rows of the corner table in Figure 1 add up to the probability of a dog being a growler and being a non-growler, respectively.  We don’t know these numbers yet, but we’ll get them eventually. 

How can we fill in the rest of the corner table?  Well, P(A and B) =  P(A | B) P(B) for any events A and B, by our formula for joint probability.  Look at the entries in the first column of the lower table in Figure 1.  These entries tell you the probability that a dog does (or does not) growl, given that the dog is friendly.  If we multiply these entries by the probability that a dog is friendly, we’ll get the probability that the dog does (or does not) growl and is friendly.  For example, 

P(G and F) = P(F) P(G|F) = (.3).1 = .03

That is, only 3% of all dogs are friendly growlers.  Similarly,

P(~G and F) = P(F) P(~G|F) = (.3).9= .27

so 27% of all dogs are friendly and don’t growl.  These and numbers belong in the corner table.  Mechanically, we simply took the numbers in the first column of the lower table and multiplied them by the .3 at the bottom of the first column on the corner table.  The result went in the first column of the corner table.  In Figure 2, below, I’ve followed this procedure for the other two columns as well.




Figure 2:  Filling in the Corner Table.

[Note how the row entries are added to give P(G) = .34 and P(~G) = .66]

The entries in the right table are all that remain, and the probability that we desire (P(V|G)) will be found in this table.  Once the corner table is complete, though, filling in the third table is easy.  Since P(F|G) = P(FG)/P(G) by our rule for conditional probability, P(F|G) = .03/.34 = 3/34.  The procedure that we used here can be easily generalized:  to fill in the right table, simply divide each entry in the corner table by the total at the end of its row.  The completed tables appear on the next page.  




Figure 3:  Our Work is Complete!  

[Note how the row entries in the right table added to 1.]

We can finally answer our question.  If a dog growls at a stranger, there is a probability of 7/34 that it is vicious—about a 20.5% chance.  (Regardless of what a dog does, the most likely situation is that the dog is neutral.)

Let’s record the steps necessary to implement our contingency table approach.

 XE "contingency table:Bayesian probability" \b Using Contingency tables to Compute Baysian Probabilities

1. Make three tables, arranged as in the example, and labeled row and column, column given row, and row given column.  The columns of the lower table will add to one, as will the rows of the right table.  (That is, adding up in the direction of the given will total to 1.)

2.
Fill in the supplied information.  I’ll assume in what follows that the row events are your “indicator” events, and the columns represent your “result” events. 

3.  Fill in the remaining entries in the three tables.  Use the relationships enumerated below.

a)  The ghosted boxes at the end of a row or column hold the total of that row or column.  For the bottom table, each column sums to 1.  For the right table, each row sums to 1.

b)  Any entry in the corner table divided by its row total gives the corresponding entry in the right table.  (Saying the same thing, any entry in the right table times the row total in the corner table gives the corresponding entry in the corner table.)

c) Any entry in the corner table divided by its column total gives the corresponding entry in the lower table.  (Saying the same thing, any entry in the bottom table times the column total in the corner table gives the corresponding entry in the corner table.)




Figure 4:  How Contingency Tables Work

Interpretation. 

The entries in the corner table are joint probabilities—the probability that both the row and column event occur.  A row total in the corner table gives the probability of the event that heads its row.  A column total in the corner table gives the probability of the event that heads its column.

The entries in the lower table are conditional probabilities.  Given that the event in the column heading did occur, how likely is it that the row event also occurs?

The entries in the right table are conditional probabilities.  Given that the event in the row heading did occur, how likely is it that the column event also occurs?

The most common information to be given are the conditional probabilities in the lower table [P(indicator | result)], and the unconditional (marginal) probabilities of the results.  These latter probabilities go on the bottom border of the corner table.  We then multiply the entries in the bottom table by the column totals in the corner table to get the corner table entries.  Next, we add the corner table entries to get the row totals.  Finally, we divide the corner table entries by their row totals to get the right table entries.

The diagram at the top of this page suggests all of these relations.

Random Variables and Expected Valuetc \l2 “Random Variables and Expected Value
Let me return, now, to random variables XE "random variable" .  Remember that a random variable is a measurable (numeric) quantity associated with the outcome of an experiment.  In our experiment of drawing 5 cards randomly from a deck of 52, we defined the random variable A to be the number of aces appearing among the cards drawn.  Clearly, this particular random variable can take on only 5 different values: 0, 1, 2, 3, or 4.  (If you get 5 aces, I’ll have look at your deck, please!)  A is an example of a discrete random variable XE "random variable:discrete vs continuous" , because if you plot its possible values on a number line, you’ll get a collection of isolated points, not a line, ray, or line segment.  

In contrast, consider the random variable T = the number of seconds required to select all 5 cards.  T could, in principle, take any positive value:  2.6 seconds, 147.2391 seconds, pi seconds, and so on.  T’s range of admissible values would graph as a ray (or “half-line”), and so T is a continuous random variable.  While both continuous and discrete random variables are important, discrete variables are conceptually easier to manipulate, and we’ll usually stick with them.  In a pinch, we can always approximate a continuous random variable by a discrete random variable, in the same way that we can approximate the number line segment from 0 to 1 by placing a large number of dots spread out over that interval.  [Mathematically, when we switch from discrete to continuous random variables, we move from addition to the calculus of integration (anti-differentiation).  While this can be easier mathematically, it involves more advanced concepts.]

Random variables are not events, so they don’t have probabilities.  It doesn’t make any sense, for example, to say, “What is the probability that the number of aces appearing in the cards drawn?”  On the other hand, saying “A = 5” is and event—the event that we draw five aces.  From our discussion so far, then, we can say P(A = 5) = 0.  (In English, “The probability of drawing 5 aces is 0.”)

In a similar fashion, we can define P(A = 0), P(A = 1), and so on.  These values are quite important, since they tell us how likely it is that our random variable will take on various values.  Taken all together, these probabilities are called the probability distribution of the random variable XE "random variable:probability distribution" .

For our aces example, the probability distribution happens to come out as shown below.

   P(A = 0) = .65884

   P(A = 1) = .29947 

   P(A = 2) = .03993

   P(A = 3) = .00174

   P(A = 4) = .00002

   P(A = 5) = .00000

      1.00000

Note that the probabilities add up to 1, as they must, since conducting the experiment has to result in some number of aces.  Note, too, that since A = 5 is impossible, its probability is 0.  I could have left the A = 5 row off, or, conversely, I could have expanded this table to include rows for A = 2.2 or A = 1000 or whatever.  But including these rows is pointless.  While these events are perfectly well defined, their probabilities are all 0—you can’t get 2.2 aces.  In general, we need only to focus on are the values that the random variable has some possibility (nonzero probability) of taking on.

We see, then, that the frequency distribution can tell us quite a lot about a random variable.  For example, the data above shows that the most common number of aces to be dealt in a hand of five cards is 0 (this will occur about 66% of the time), and that being dealt all four aces will occur, on average, only about 2 times per 100,000 deals.  It would be nice, though, to be able to figure out the average (or mean) number of aces that a hand will contain.  Here’s one way we could figure this out.  Suppose we were dealt 100,000 hands.  According to the table above and our definition of probability, then we should get, on average, ace-free hands in about 65,884 of them.  Further, we should get (on average) one ace in about 29,947 cases, two aces in about 3,993 cases, three aces in about 174 cases, and 4 aces in about 2 cases.

How many aces do we expect, then, in all 100,000 of these hands put together?  Simply 65,884(0) + 29,947(1) + 3,993(2) + 174(3) + 2(4) = 38,463.  To find the average number of aces expected per hand, we divide this total number of expected aces in 100,000 hands by the total number of hands--100,000.




So, on the average number of aces to get in a five card hand is 0.38463 aces, or about four tenths of an ace.  We use the symbol E(A) (read “the expected value of A”)  XE "expected value" to represent our answer.

You have to keep in mind what this expected value means—we are not saying that we expect to see four tenths of an ace in our hand.  We mean simply that, if you looked at a large number of hands and computed the arithmetic average of the number of aces found per hand, you’d get about 0.4.  

Remember:  The expected value of X, the mean value of X, and 

the average value of X all mean the same thing!

     For the aces problem, knowing E(A) might be useful if, for example, I tell you that I’ll charge you 50 cents to play the following game:  I deal you 5 cards from an ordinary deck, and will pay you $1 for each ace you are dealt.  You should reject my offer, since the average number of aces in a deal is 0.38463, so the average number of dollars I will pay you is $0.38463, or about 39 cents.  You are therefore paying 50 cents to play a game whose average winnings are only 39 cents.  On average, I will win about 11 cents per game from the people foolish enough to play it.  (By the way, all lotteries work like this—the expected payoff is smaller than the ticket cost.)

Let’s streamline our calculations a bit, since it’s clumsy to have to talk about 100,000 cases.  We’ll start with the work above and rewrite it in an equivalent form:




where the second row comes from the first by distributing the division by 100,000 over all of the terms.  Note that the last row has a very simple form:

E(A)   =   P(A=0)(0) + P(A=1)(1) + P(A=2)(2) + P(A=3)(3) + P(A=4)(4)

That is, we computed the expected value of A by considering all possible values that A (the number of aces) could take on.  We multiplied each such value by the probability that it occurs, and added up the results.  This procedure works in general for discrete random variables, and is our real definition of expected value.

Definition XE "expected value:definition" 

 XE "random variable:expected value" \t "See expected value" 
For any discrete random variable X, the expected value of X, written E(X), is computed as follows:  

1.  Multiply each possible value that X can take on by the probability that X does indeed take on

     that value, then add up the results.  Symbolically,




 [The ( part simply says:  take every sensible value for r, do what follows me, and add the results

 for all those r.  The “what follows” part is “r times the probability that X = r”.]

Example:  Suppose I roll a (fair) six-sided die.  Let R = the number rolled on the die.  Then the possible values for the random variable R are 1,2,3,4,5, and 6.  Since, on a fair die, the probability of rolling any of these numbers is just 1/6 (that is, P(R=1) = 1/6, P(R=2) = 1/6, etc.), then

E(R) = 1 P(R=1) + 2 P(R=2) + 3 P(R=3) + 4 P(R=4) + 5 P(R=5) + 6 P(R=6) =

1 (1/6)  + 2 (1/6)  + 3 (1/6)  + 4 (1/6)  + 5 (1/6)  + 6 (1/6)  = 3.5

So the expected (average) value of a fair die roll is 3.5.  If your rolled the die many times, recorded all of your rolls, added them together, then divided by the number of rolls, the answer would come out quite close to 3.5.

In the remaining chapters, we’ll be very concerned about expected values, and this makes sense, since the expected value of a random variable is just its “average” value.  It’s appropriate, then, that we take a few more minutes to discuss some of the important (and rather convenient) properties of expected values.

Properties of Expected Valuestc \l2 “Properties of Expected Values
 XE "expected value:properties" Let’s expand the last example of rolling a die.  Suppose that the die in the previous example was red, so R = the number rolled on the red die.  Suppose that I have another fair six-sided die, a green one, and I let G = the number rolled on the green die.  I could now make up other random variables that are related to R and G.  For example:

S = the sum of the numbers rolled on the red and green dice

M = the product of the numbers rolled on the red and green dice

For example, if I roll a 3 on the red die and a 4 on the green die, then R = 3, G = 4, S = 3 + 4 = 7, and M = 3 ( 4 = 12.  In general, to find S, I take the number on the red die (the value of R) and add it to the number on the green die (the value of G).  Saying this succinctly, S = R + G.  Using the same kind of reasoning, we can see that M = R ( G.

It’s obvious that if I know the value that R and G take on in a particular trial, then I know the values of M and S for that trial.  But can I use what I know about R and G to figure out the average values of M and S—that is, to compute E(M) and E(S)?  The answer turns out to be yes.

Expected Value of a Sum

 XE "expected value:of a sum" Suppose I want E(S)--that is, what is the expected (or average) value of the sum of two dice.  Asked another way, what will your “average roll” be on two dice?   You might hope that, since the average roll on a single die is 3.5 (see top of this page), that the average roll on two dice would be 3.5 + 3.5, or 7.  Checking the validity of this guess involves a bit of work, for the two dice could be rolled in no less than 36 ways, as shown in the table below.

	
	Roll on the green die (G)

	
	
	1
	2
	3
	4
	5
	6

	
	1
	2
	3
	4
	5
	6
	7

	Roll on
	2
	3
	4
	5
	6
	7
	8

	the red
	3
	4
	5
	6
	7
	8
	9

	die (R)
	4
	5
	6
	7
	8
	9
	10

	
	5
	6
	7
	8
	9
	10
	11

	
	6
	7
	8
	9
	10
	11
	12


Each of these 36 dice outcomes is equally likely, so we can compute probabilities simply by counting cases.  For example, the probability of rolling a total of 2 on two dice is 1/36, since only one of the 36 dice combinations give a roll of two—“snake eyes”.  Similarly, we get P(S = 3) = 2/36, P(S = 4) = 3/36, P(S = 5) = 4/36, P(S = 6) = 5/36, P(S = 7) = 6/36, P(S = 8) = 5/36, P(S = 9) = 4/36, P(S = 10) = 3/36, P(S = 11) = 2/36, P(S = 12) = 1/36.  Knowing these, we can use the definition of expected value to find E(S).



2 P(S=2) + 3 P(S=3) +4 P(S=4) + 5 P(S=5) + 6 P(S=6) + 7 P(S=7) + 

8 P(S = 8) + 9 P(S=9) + 10 P(S=10) + 11 P(S=11) + 12 P(S=12) = 

2(1/36) + 3(2/36) + 4(3/36) + 5(4/36) + 6(5/36) + 7(6/36) + 

8(5/36) + 9(4/36) + 10(3/36) + 11(2/36) + 12(1/36) = 7  (whew!)

It worked!  

Look what has gone on here.  In order to find E(S), the definition of expected value really required us to go through all this work.  The answer, after quite a bit of effort, turned out to be the same as E(R) + E(G).  Finding E(R) and E(G) was much easier, though, than finding E(S).  A bit of study of the mathematics will show that this relationship between S, R, and G is not a fluke.  We have the following very useful result.

Addition Law for Random Variables
For any random variables A and B, let C = A + B.  Then E(C) = E(A) + E(B).   XE "random variable:addition law" 
In words, “the expected value of a sum of random variables is the sum of the expected values of the random variables”.  More colloquially, suppose you measure one thing, and then measure another, and then add them together to get their sum.  Then the average sum you will get will simply be the average of the first thing plus the average of the second thing. 

A useful application of this will arise in Chapter 12, when we study waiting lines.  Since, for any customer,  the time spent in a service facility = the time spent in line + the time spent being served, we now know that

the average time spent in the service facility = the average time spent in line + the average time being served.  This will be quite useful

.

Notes: 

1) The boxed result holds equally well for the difference of two random variables:  

If C = A - B, then E(C) = E(A) - E(B).

2) It’s possible that you’re beginning to get the impression that we aren’t really saying anything; that these relations are “obviously true”.  The statement says that you can add random variables and then take expected values or you can do it in the other order, and you’ll get the same answer.  There are lots of cases when you can get away with switching order (like putting on your shoes and your jacket) and a lot of other cases where the order is crucial (like putting on your shoes and socks!).  

It’s wonderfully convenient mathematically when we can reverse the order in which we can do two operations, but it doesn’t always happen.  We’ll find out in a moment, for example, that this nice property doesn’t necessarily hold for the product of random variables.  That is, if you multiply two random variables and then take the expected value of the result, you don’t necessarily get the same answer as if you took the expected values of each variable first, then multiplied the results.  Figuring out when we can get away with this trick (and why we’re very happy when we can) is the focus of the next subsection.

Expected Value for a Product

 XE "expected value:of a product" Let’s continue with our last example: R is the number rolled on our red die, G is the number rolled on our green die, and M is the number we get by multiplying these two numbers together, so M = R ( G.  What is E(M)?

The simplest relation you could hope for is that, since M = R ( G
, then E(M) = E(R) ( E(G) = 3.5 ( 3.5 = 12.25.  This is, though, just a guess.  To compute E(M), we’re forced back to the definition of expected value.  There’s only one way to do this.  We’ll figure out the probability that M equals each of its possible values from the table to the left, then plug these into the definition of E(M).  Here’s the work.




	
	Roll on the green die (G)

	
	
	1
	2
	3
	4
	5
	6

	
	1
	1
	2
	3
	4
	5
	6

	Roll on
	2
	2
	4
	6
	8
	10
	12

	the red
	3
	3
	6
	9
	12
	15
	18

	die (R)
	4
	4
	8
	12
	16
	20
	24

	
	5
	5
	10
	15
	20
	25
	30

	
	6
	6
	12
	18
	24
	30
	36


1 P(M=1) + 2 P(M=2) +3 P(M=3) + 4 P(M=4) + 5 P(M=5) + 6 P(M=6) +8 P(M=8) + 9 P(M=9) + 10 P(M=10) +12 P(M=12) + 15 P(M=15) + 16 P(M=16) + 18 P(M=18) + 20 P(M=20) + 24 P(M=24) +25 P(M=25) + 30 P(M=30) + 36 P(M=36) 

= 1/36 [1(1) + 2(2) + 3(2) + 4(3) + 5(2) +6(4) + 8(2) + 9(1) + 10(2)+ 12(4) +15(2) +16(1) +18(2) + 20(2)+ 24(2) +25(1) +30(2) +36(1)] = (1/36) (441) 







        = 12.25   (
A few notes:  

1) I didn’t include terms for M = 7, M = 11, etc. in my work, since the probability of M equaling these values is zero.  (See table.)  

2) Since each of the 36 possible red/green die rolls appearing in the table are equally likely, the probability of M equaling a particular number is just 1/36 times the number of times that number appears in the table.  For example, P(M = 12) = 4/36, since M = 12 in 4 different roll combinations: red 2: green 6, red 3: green 4, red 4: green 3, and red 6: green 2.  Since all our probabilities will involve 1/36, I factored this constant out of the terms in the middle part of my calculation.

3) Delightfully, the answer comes out as we would hope!  E(M) = E(R) ( E(G)!!!

4) Unfortunately, this simple type of relationship doesn’t always hold, as the example below shows.

Example:  

Let R = the number rolled on the red die

Let Q = the square of the number rolled on the red die.  (That is, Q = R ( R.)

Guided by our above successes, you might expect that E(Q) = E(R)  E(R) = 12.25.  THIS IS FALSE, as the work on the next page verifies.

E(Q) =  ( r P(Q=r) = 1(1/6) + 4(1/6) + 9(1/6) + 16(1/6) + 25(1/6) + 36(1/6) 

= (91)(1/6) = 15.167

[There are six equally likely rolls of the red die, giving values of 1, 4, 9, 16, 25, and 36 to Q = R ( R.]
So Q is R times R, but the average value of Q is bigger than what we get by squaring the average value of R.

What Has Gone Wrong?  (Independent and Dependent Random Variables)

Actually, a more appropriate question would be:  Why does the “multiplication trick” ever work?  There isn’t really any real reason to expect that the average of a bunch of products would be the same as the product of averages.  Happily, though, E(A ( B) does equal E(A) ( E(B) in many circumstances.  Probing the mathematics of expected value calculation a bit will show, for instance, that this nice relation holds if A and B are independent random variables. XE "random variable:independent and dependent" 
Definition
A and B are independent random variables if knowing the value of one of the two variables does not revise the probability distribution of the other variable.  More formally, A and B are independent if

P(A=n) = P( A=n | B=m )

for any values of n and m for which P(B=m) > 0.

More intuitively, A and B are independent if knowing the value of A gives you no information useful in prediction the value of B.  In our first example, knowing the number rolled on the red die gives no information about what is rolled on the green die, so these random variables (R and G) are independent.  In the second example, knowing the number rolled on the red die certainly does give us information about what is rolled on the red die, so R and R are not independent.  They are dependent.
Note that the information involved in dependency need not be complete; all that is required is that the additional information makes us change our probabilities.  For example, the second ball drawn in a lottery drawing is dependent on the first ball, since (for example) if the first ball was the number 16, the second ball cannot be 16.  We can go further: the numbers drawn first and second would be dependent even if the “lottery bin” contained 6 copies of each number.  Drawing (say) a 16 on the first draw would reduce the probability of drawing a 16 on the second draw.  (There would be less 16s left in the bin.)  The only way that these two draws could be independent is if the first ball drawn were returned to the bin before the second draw was made.  (Knowing the first draw result would then provide no useful information in considering the second draw.)

In any event, we can now state our second (and quite useful) rule for expected values:

The Multiplication Law for Independent Random Variables

 XE "random variable:multiplication rule" Let A and B be independent random variables, and let C = A ( B.  Then     

E(C) = E(A) ( E(B)

Recall that this statement is not in general true if the variables are dependent.

Examples of Expected Value Calculationstc \l2 “Examples of Expected Value Calculations
 XE "sample problems:roulette" Example:  (Roulette)  A roulette wheel can stop in any of 38 positions, 18 of which are red in color.  If a person bets “red” and the wheel stops on a red number, the bettor doubles her money.  (If the wheel stops on a nonred number, the bettor loses the bet.)  Let W be the amount of money she wins, over and above her original bet.  Her expected winnings, then, on a $1 bet on “red” is

E(W) = 18/38 (1) + 20/38 (-1) = -1/19 = -.05263.  

That is, on average, the bettor will lose about 5 cents on a $1 bet.  [The (1) and (-1) in the formula show that a win wins $1 while a loss loses the original $1 bet.]  As it turns out, almost every possible bet in roulette (for example, playing “black”) has this same expected payoff.  (There are a few bets that don’t, but they give even worse payoffs.)

Suppose that a roulette player is playing according to a “system”, sometimes playing “red” and sometimes playing “black”.  Suppose she also varies the size of her bets, but that her average bet is $10.  What is the average amount of money that she will win per spin of the wheel?

Answer:  Exactly what you’d expect.  The amount she gains on a spin (G) will be the number of dollars she bets (B) times the amount she would win on a $1 bet (W).  That is, G = W ( B.  Since knowing how much she bet tells you nothing about whether or not she will win, W and B are independent random variables.  Hence, E(G) = E(W) ( E(B) = (-.05263)(10) = -.5263.  In other words, she will lose, on average, about 53 cents per spin of the wheel.

Note that this result is entirely independent of what “system” she is playing.  There can be no “winning system” for roulette, unless the roulette wheel is rigged.  She may win sometimes, but, in the long run, her losses will overbalances her gains, and she’ll approach the expected loss of about 53 cents per game.

Example:  (Dream Roulette)  Suppose that a casino would allow our bettor to play in this way:  first, the bettor chooses whether she wishes to play “black” or “red”.  The wheel is then spun, and the bettor observes whether she has won or not.  She then decides how much she wishes to bet on this round.  Payoffs are as in normal roulette.  Suppose that, again, her average bet is $10.  (This may be the case because the casino sets some upper limit on her bets.)

Is E(G), her expected gain per spin of the wheel, still a 53 cent loss?  Doubtful!  Clearly, if she discovers she lost, she should bet $0 (or a penny, if 0 is forbidden).  If she discovers she has won, she should bet all that she can.  This strategy should make her a ton of money.  Why does our formula break down?

I hope it’s clear:  W and B are no longer independent.  Knowing whether or not the bettor won tells us something about the size of her bet—quite a lot, really.

Review Questions

R 6.1  How do we compute the probability of an event using the relative frequency approach?

R 6.2  I have two 1996 coins in my pocket, a penny and a nickel.  I choose one at random.  Clearly, the probability is has a picture of Lincoln on it is 0.5.  The probability that it is made of copper is 0.5.  So I conclude that the probability that it has a picture of Lincoln and is made of copper is 0.5 ( 0.5 = 0.25.  What’s wrong with this logic?  Use the joint probability formula to demonstrate the correct way this joint probability should be calculated.

R 6.3  Let R = the person interviewed is Republican and F = the person interviewed is female.  Then how would one express the following events in terms of our probability notation?  a)  How likely is it the person interviewed is a male Republican?  b)  How likely is it that a woman we interview is a Republican?  c)  What fraction of Republicans are women?

R 6.4
Give an example of two independent random variables.  Give an example of two dependent random variables.  Under what circumstances does E(A) + E(B) = E(A + B)?

R 6.5  You may hear a statistic like “30% of all highway fatalities involve drunk drivers.”  From a statistical point of view, why is this the wrong statistic upon which to base a MADD (Mothers Against Drunk Drivers) lobbying effort?  What probability involving the same events would be relevant?  Hint:  Compare to the statistic, “Over 50% of all highway fatalities involve male drivers.

Chapter 6

P 6.1  We choose a number at random from 1 to 10.  Let Di = the number is evenly divisible by i, so D2 = the number is even, etc.  Let X = the number selected.

a) Is Di an event or a random variable?  Is X an event or a random variable?

b) Find P(D3), P(D6), P(D3 | D6), P(D6 | D3), and P(D5 | D7).

c) Find P(X = 6), P(X = 6 | D3), P(X = 10 | X > 8), and P(D4 | X < 4).

P 6.2   We write the number “1” one head of a penny and the number “–1” on the tail.  We then flip the coin.  Let N = the number appearing on the top of the coin, and B be the number on the bottom of the coin.  Find E(N), E(B), E(N + B), and E(NB).  Interpret each.

P 6.3  A standard six sided die is made so that the opposite faces always add to seven.  Hence, the “1” face is always opposite the “6” face, and so on.  Let T = the number that appears on the top face of a die that we roll, and B = the number appearing on the bottom face.

a) What does T + B mean?  Is it correct to write T + B = 7?

b) Find E(T + B), E(T) and E(B).

c) Find E(T  B).  Does it equal E(T)  E(B)?

d) Suppose our six sided die were made in a nonstandard way.  The faces are still labeled with the numbers from 1 to 6, but opposite faces no longer necessarily add to 7.  Answer questions a) – c) in this case, if you can.

P 6.4   Lady Fish has witnessed a murder, committed one night on an isolated island.  The island's population is racially mixed, with 90% white and 10% black inhabitants.  The lady has identified the killer as black.  In an attempt to determine the reliability of the witness, Lady Fish is required to identify the color of a large number of people under conditions similar to those at the murder scene.  She correctly identified the color of 85% of the whites (15% of the time she mistook them for black), and correctly identified the color of 95% of the blacks (5% of the black cases were identified as white).

What is the probability that Lady Fish is correct in her belief that the murderer is black?  (We assume that probability of a person committing murder does not depend on his color.)  Are you surprised?  

P 6.5    On your route to work, there are two traffic lights.  You are 20% likely to be stopped at the first and 40% likely to be stopped at the second. 

a)   USE THE DEFINITION OF EXPECTED VALUE to compute the expected number of traffic light stops you'll make on your way to work.  Interpret this number in English.  You may assume that the lights are not synchronized with one another in any way.  (Note that you will have to consider 4 different cases.)

b)    Use the LAWS OF RANDOM VARIABLES to verify that the answer that you obtained in part a was correct.  Show your (significantly easier) work.

a)   Now suppose the lights are wired so that whenever you are stopped at the first light, you are also stopped at the second.  It is still true that you are stopped at the first light 20% of the time and at the second light 40% of the time.  Use the definition of expected value to compute the average number of stops you’ll have to make under these circumstances.  Your calculations will be similar to (but not identical with) part a).  Do you get the same answer?  Is this coincidence?

 P 6.6    The rate at which a factory produces baseball bats varies from day to day.  Half the time, they make 100 bats, 25% of the time they make 150 bats, and 25% of the time they make 200 bats per day.  Some of the bats made are defective, but the defect rate is not linked to the number of bats made per day; it depends on the quality of wood that happened to arrive at the factory for that day.  On 50% of the days, the defect rate is 10%; that is, 10% of the bats made on that day are defective.  On 40% of the days, the defect rate is 15%.  The remaining 10% of the days suffer a 25% defect rate.

a) Compute the expected number of  defective bats made per day.  Show your work.  Hint:  There is an easy way and a hard way!

b) Does your answer rely on the fact that production rate and defect rate are not linked to one another?  Why or why not?

� The outcome of the trial, technically, would include all the information we would ever want to know about the result of this particular trial.  It could include the cards drawn, the order in which they were drawn, at what times they were drawn, their orientation and locations in the deck, etc.  If we only want to consider matters that depend only on the cards drawn, though, we can restrict our attention (our “universe of discourse� XE "universe of discourse" �”) to that.


� You’re not responsible for this calculation, but for those of you who are interested:  the chance that the second card matches the first card’s color is 25/51.  Given that it did match, the chance that the next card matches, too, is 24/50, and so on.   In general, the chance that a bunch of things all happen is the chance that one of them happens, times the chance that a second one happens given that the first one happened, times the chance that a third one happens given that the first two happened, and so on.  We’ll see this idea again when we study joint and conditional probability.


� Something interesting shows up here:  the word “but” is, if you like, a form of “and”.  Compare:


I studied quant for 30 minutes and passed the test.


I studied quant for 30 minutes but passed the test.





Both statements are equivalent in terms of propositional logic.  Why?  Both claim that these two statements are true:  1)  I studied quant for 30 minutes and 2) I passed the test.  The difference between the “and” and “but” forms is the way in which they reflect the expectations of the speaker:  the first form implies that it is sensible that these two events should occur together, while the second implies that it is surprising to pass with only 30 minutes study.


While we may be interested in whether or not the speaker is surprised, this information doesn’t change the events under discussion.  “And” and “but” are entirely equivalent.





� If A and B are independent, this reduces to P(A)P(B).  We’ll have more to say about independence later.  Note that the joint formula is just the conditional formula, solved for P(A and B) rather than P(B | A).


� Assuming, of course, that your categories are nonoverlapping and comprehensive (mutually exclusive and completely exhaustive).


� Obviously, you want to read these formulae in English.  These expressions—D, S, ~S and so on—all represent English sentences.  Read them that way!


� While this is the most common information given, it is not always the case.  Think about what you are told!


� You’re not expected to be able to compute these, although if you remember your 191, you should be able to.


� Mathematical purists will note that I’m actually cheating here.  Our relative frequency definition of probability (p. 6-2) doesn’t suggest that we’d get 65,884 ace-free hands, only that the fraction of ace-free hands would be pretty close to .65884.  I’m using the average value of the number of ace-free hands as if it were the actual number of ace-free hands.  Happily, a more rigorous look at how probabilities and random variables work shows that, in this kind of calculation, the simplification is allowed.


� Remember what this means.  The variable M is defined to be R ( G, meaning that, for any roll of the two dice, M is just the number you get by multiplying the two numbers rolled.  You can imagine that the R is going to tell you how many payments you have to make to me, and G is going to tell you how many dollars must be in each payment.  Clearly, I’ll get something between $1 and $36 from you—but on average, how much can I expect?  That’s the question that E(M) will answer.  


� See if you can work out the correct value of E(Q) before reading on.  You should be able to.
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